A methodology for the classification of convective structures using meteorological radar: Application to heavy rainfall events on the Mediterranean coast of the Iberian Peninsula
نویسندگان
چکیده
During the period 1996–2000, forty-three heavy rainfall events have been detected in the Internal Basins of Catalonia (Northeastern of Spain). Most of these events caused floods and serious damage. This high number leads to the need for a methodology to classify them, on the basis of their surface rainfall distribution, their internal organization and their physical features. The aim of this paper is to show a methodology to analyze systematically the convective structures responsible of those heavy rainfall events on the basis of the information supplied by the meteorological radar. The proposed methodology is as follows. Firstly, the rainfall intensity and the surface rainfall pattern are analyzed on the basis of the raingauge data. Secondly, the convective structures at the lowest level are identified and characterized by using a 2-D algorithm, and the convective cells are identified by using a 3-D procedure that looks for the reflectivity cores in every radar volume. Thirdly, the convective cells (3-D) are associated with the 2-D structures (convective rainfall areas). This methodology has been applied to the 43 heavy rainfall events using the meteorological radar located near Barcelona and the SAIH automatic raingauge network.
منابع مشابه
Full routing and synoptic analysis A sample of studies of heavy rainfall systems in excess of 50 mm in southern Iran
Problem statement The occurrence of terrible floods due to climate change has caused much damages in different parts of the world in recent decades, and the effect of these changes is more pronounced in dry areas. Floods are the most common environmental damage. On average, 60 floods occur annually in Iran, with an average annual flood loss of 141 people, meaning more than 2 deaths per year pe...
متن کاملRadar analysis of the life cycle of Mesoscale Convective Systems
The 10 June 2000 event was the largest flash flood event that occurred in the Northeast of Spain in the late 20th century, both as regards its meteorological features and its considerable social impact. This paper focuses on analysis of the structures that produced the heavy rainfalls, especially from the point of view of meteorological radar. Due to the fact that this case is a good example of...
متن کاملRadar analysis of the life cycle of Mesoscale Convective Systems during the 10 June 2000 event
The 10 June 2000 event was the largest flash flood event that occurred in the Northeast of Spain in the late 20th century, both as regards its meteorological features and its considerable social impact. This paper focuses on analysis of the structures that produced the heavy rainfalls, especially from the point of view of meteorological radar. Due to the fact that this case is a good example of...
متن کاملSensitivity of a mesoscale model to different convective parameterization schemes in a heavy rain event
The Valencia region, on the Mediterranean coast of the Iberian Peninsula, is propitious to heavy precipitation, especially the area encompassing the South of Valencia province and the North of the Alicante province. In October 2007 a torrential rain affected the aforementioned area, producing accumulated rainfall values greater than 400 mm in less than 24 h and flash-floods that caused extensiv...
متن کاملEstimation of convective precipitation: the meteorological radar versus an automatic rain gauge network
The estimation of convective precipitation and its contribution to total precipitation is an important issue both in hydrometeorology and radio links. The greatest part of this kind of precipitation is related with high intensity values that can produce floods and/or damage and disturb radio propagation. This contribution proposes two approaches for the estimation of convective precipitation, u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004